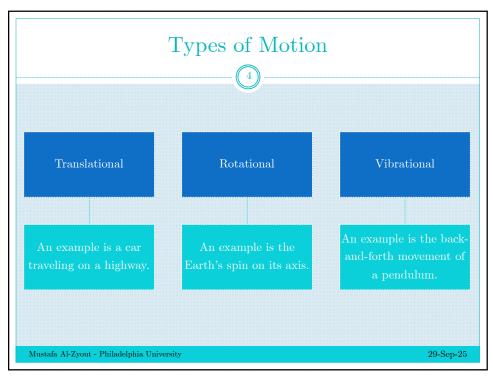
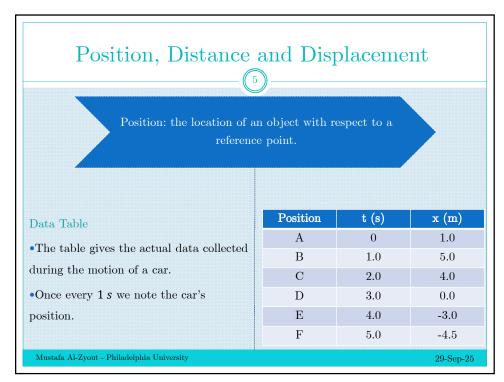


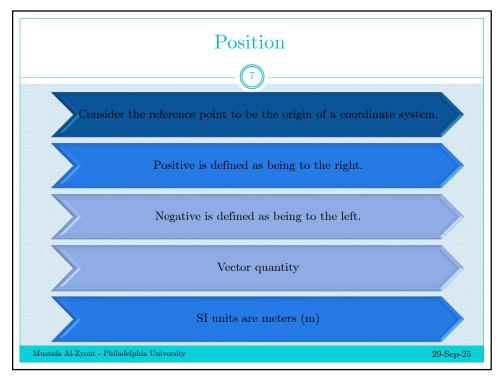
Kinematics

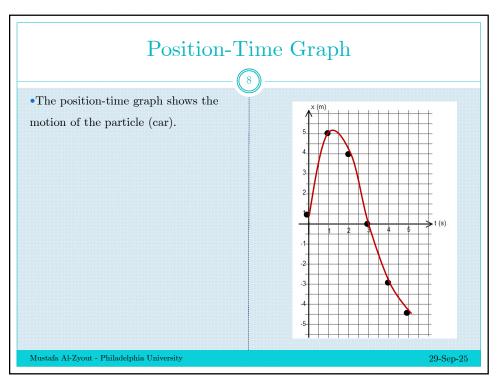


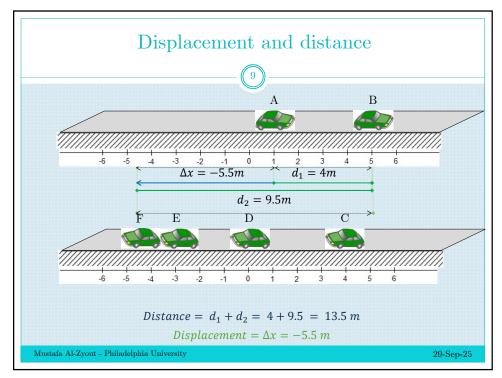
- Describes motion while ignoring the external agents that might have caused or modified the motion.
- Describes motion in terms of: time, position, velocity and acceleration.
- o Motion represents a continual change in an object's position.
- For now, will consider motion in one dimension. (Along a straight line)

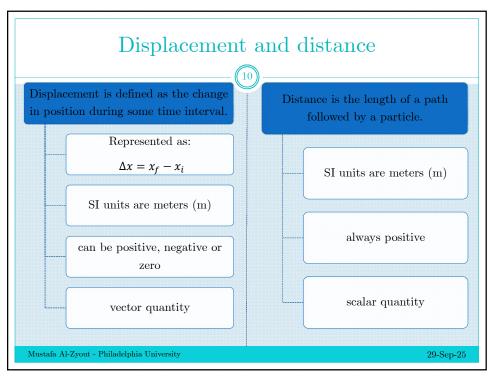

Mustafa Al-Zyout - Philadelphia University

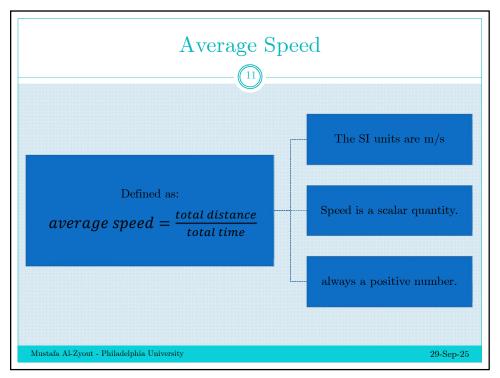
29-Sep-25

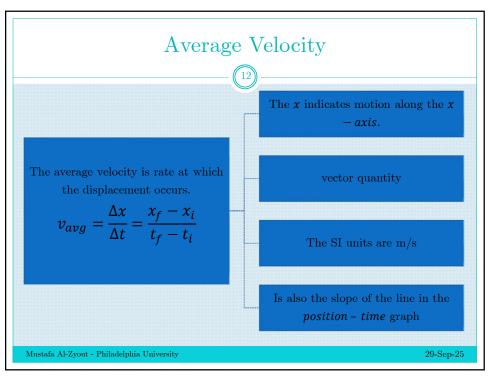

3

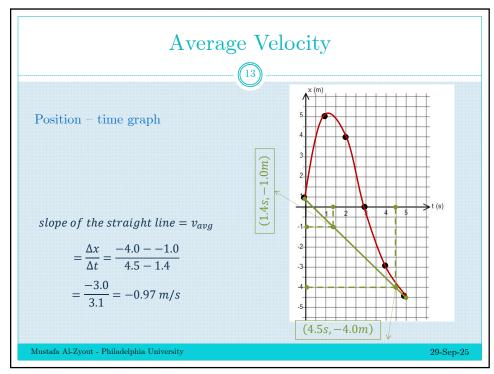



Δ



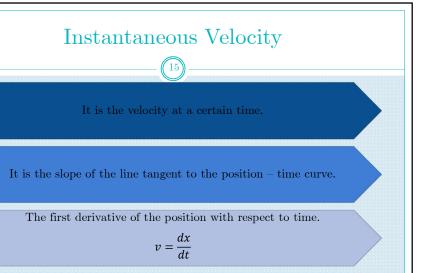






C

Average Speed and Average Velocity

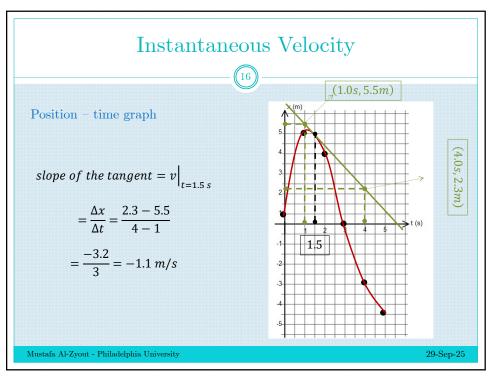

The average speed is not the magnitude of the average velocity.

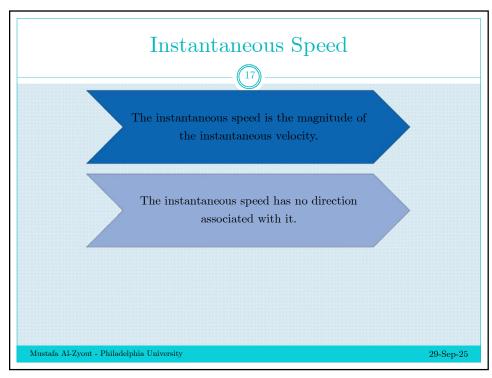
- For example, a runner ends at her starting point.
- ${\color{orange} \circ}$ Her displacement is zero.
- Therefore, her velocity is zero.
- $\circ\,$ However, the distance traveled is not zero, so the speed is not zero.

The average speed equals the average velocity when the object is moving along a straight line and don't change direction.

Mustafa Al-Zyout - Philadelphia University

29-Sep-25




The instantaneous velocity can be positive, negative, or zero.

Mustafa Al-Zyout - Philadelphia University

29-Sep-25

15

A Particle Under Constant Velocity

Constant velocity indicates that at any instant during a time interval the instantaneous velocity is the same as the average velocity.

$$v = v_{avg}$$

$$v = \frac{x_f - x_i}{t_f - t_i}$$

Common practice is to let $t_i=0,\,t_f=t$ and the equation becomes:

$$x_f = x_i + vt$$

Mustafa Al-Zyout - Philadelphia University

 $29\text{-}\mathrm{Sep\text{-}}25$

Particle Under Constant Velocity, Graph

Position – time graph

The graph represents the motion of a particle under constant velocity.

The slope of the graph is the value of the constant velocity;

$$slope = \frac{\Delta x}{\Delta t} = v$$

$$v = \frac{4-2}{5-0} = 0.4 \ m/s$$

The y-intercept is x_i . $x_i = 2 m$

Mustafa Al-Zyout - Philadelphia University

29-Sep-25

Friday, 10 September, 2021 09:04

Lecturer: Mustafa Al-Zyout, Philadelphia University, Jordan.

- R. A. Serway and J. W. Jewett, Jr., Physics for Scientists and Engineers, 9th Ed., CENGAGE Learning, 2014.
- J. Walker, D. Halliday and R. Resnick, Fundamentals of Physics, 10th ed., WILEY,2014.
- H. D. Young and R. A. Freedman, University Physics with Modern Physics, 14th ed., PEARSON, 2016.

A car moving along the x-axis starts from the position $x_i = 2 m$ when $t_i = 0$ and stops at $x_f = -3 m$ when $t_f = 2 s$.

- (a) Find the displacement, the average velocity, and the average speed during this interval of time.
- (b) If the car goes backward and takes 3 s to reach the starting point, then repeat part (a) for the whole time interval.

Solution:

$$\Delta x = x_f - x_i = -3 - 2 = -5m$$

$$v_{avg} = \frac{\Delta x}{\Delta t} = \frac{-5}{2} = -2.5 \, m/s$$

average speed =
$$\frac{\text{dis } \tan ce}{\text{time}} = \frac{5}{2} = 2.5 \, \text{m/s}$$

Solution:

$$\Delta x = x_f - x_i = 2 - 2 = 0m$$

$$v_{avg} = \frac{\Delta x}{\Delta t} = \frac{0}{2} = 0 \, m/s$$

average speed =
$$\frac{\text{dis} \tan ce}{time} = \frac{10}{5} = 2 \, m/s$$

Average and Instantaneous Velocity

Thursday, 28 January, 2021 16:01 Lecturer: Mustafa Al-Zyout, Philadelphia University, Jordan.

[] R. A. Serway and J. W. Jewett, Jr., Physics for Scientists and Engineers, 9th Ed., CENGAGE Learning, 2014.

J. Walker, D. Halliday and R. Resnick, Fundamentals of Physics, 10th ed., WILEY, 2014.

H. D. Young and R. A. Freedman, University Physics with Modern Physics, 14th ed., PEARSON, 2016.

H. A. Radi and J. O. Rasmussen, Principles of Physics For Scientists and Engineers, 1st ed., SPRINGER, 2013.

A particle moves along the x axis. Its position varies with time according to the expression $x = -4t + 2t^2$, where (x) is in meters and (t) is in seconds.

- \circ Determine the displacement of the particle in the time intervals (t = 0) to (t = 1 s) and (t = 1 s) to (t = 3 s).
- Calculate the average velocity during these two time intervals.
- \circ Find the instantaneous velocity of the particle at (t = 2.5 s).

Slope = +4 m/sSlope = -2 m0

x(m)

(A) Solution

In the first time interval, let $t_i=t_A=0$ and $t_f=t_B=1$ s, the displacement:

$$\Delta x_{A \to B} = x_f - x_i = x_B - x_A$$

$$\Delta x_{A\to B} = [-4(1) + 2(1)^2] - [-4(0) + 2(0)^2] = -2m$$

In the second time interval, let $t_i = t_B = 1 \text{ s}$ and $t_f = t_D = 3 \text{ s}$, the displacement:

$$\Delta x_{B\to D} = x_f - x_i = x_D - x_B$$

$$\Delta x_{B\to D} = [-4(3) + 2(3)^2] - [-4(1) + 2(1)^2] = +8m$$

(B) Solution

In the first time interval, $\Delta t = t_f - t_i = t_B - t_A = 1 s$:

$$\Rightarrow \vec{v}_{(A \to B)} = \frac{\Delta \vec{x}_{A \to B}}{\Delta t} = \frac{-2 m}{1 s} = -2 m/s$$

In the second time interval, $\Delta t = t_f - t_i = t_D - t_B = 2 \, s$

$$\Rightarrow \vec{v}_{(B\to D)} = \frac{\Delta \vec{x}_{B\to D}}{\Delta t} = \frac{8 m}{2 s} = +4 m/s$$

(C) Solution

Measure the slope of the tangent at (t = 2.5 s) (point C):

$$v_{x} = \frac{10 - (-4m)}{3.8s - 1.5s} = +6m/s$$

OR:

$$v_x = \frac{dx}{dt} = \frac{d}{dt}(-4t + 2t^2) = -4 + 4t$$

$$v_{t=2.5s} = -4 + (4)(2.5) = +6m/s$$